Are fossil groups a challenge of the Cold Dark Matter paradigm?
نویسندگان
چکیده
We study six groups and clusters of galaxies suggested in the literature to be ‘fossil’ systems (i.e. to have luminous diffuse X-ray emission and a magnitude gap of at least 2 mag-R between the first and the second ranked member within half of the virial radius), each having good quality X-ray data and SDSS spectroscopic or photometric coverage out to the virial radius. The poor cluster AWM4 is clearly established as a fossil system, and we confirm the fossil nature of four other systems (RXJ1331.5+1108, RXJ1340.6+4018, RXJ1256.0+2556 and RXJ1416.4+2315), while the cluster RXJ1552.2+2013 is disqualified as fossil system. For all systems we present the luminosity functions within 0.5 and 1 virial radius that are consistent, within the uncertainties, with the universal luminosity function of clusters. For the five bona fide fossil systems, having a mass range 2×10−3×10 M⊙, we compute accurate cumulative substructure distribution functions (CSDFs) and compare them with the CSDFs of observed and simulated groups/clusters available in the literature. We demonstrate that the CSDFs of fossil systems are consistent with those of normal observed clusters and do not lack any substructure with respect to simulated galaxy systems in the cosmological ΛCDM framework. In particular, this holds for the archetype fossil group RXJ1340.6+4018 as well, contrary to earlier claims.
منابع مشابه
A dynamical fossil in the Ursa Minor dwarf spheroidal galaxy
The nearby Ursa Minor dwarf spheroidal (UMi dSph) is one of the most dark matter dominated galaxies known, with a central mass to light ratio M/L ∼ 70. Somewhat anomalously, it appears to contain morphological substructure in the form of a second peak in the stellar number density. It is often argued that this substructure must be transient because it could not survive for the > 10 Gyr age of t...
متن کاملThe Dark Matter Density Profile of the Lensing Cluster Ms2137-23: a Test of the Cold Dark Matter Paradigm
We present new spectroscopic observations of the gravitational arcs and the brightest cluster galaxy (BCG) in the cluster MS2137-23 (z = 0.313) obtained with the Echelle Spectrograph and Imager on the Keck II telescope. We find that the tangential and radial arcs arise from sources at almost identical redshifts (z = 1.501, 1.502). We combine the measured stellar velocity dispersion profile of t...
متن کاملCold Dark Matter Models
Motivated by inflation, the theory of big-bang nucleosynthesis and the quest for a deeper understanding of the fundamental forces and particles, a very successful paradigm for the development of structure in the Universe has evolved. It holds that most of the matter exists in the form of slowly moving elementary particles left over from the earliest moments (cold dark matter or CDM) and that th...
متن کاملCold Dark Matter Cosmology Conflicts with Fluid Mechanics and Observations
Cold dark matter hierarchical clustering (CDMHC) cosmology based on the Jeans 1902 criterion for gravitational instability gives predictions about the early universe contrary to fluid mechanics and observations. Jeans neglected viscosity, diffusivity, and turbulence: factors that determine gravitational structure formation and contradict small structures (CDM halos) forming from non-baryonic da...
متن کاملThe Fluid Mechanics of Gravitational Structure Formation
The standard model for gravitational structure formation in astrophysics, astronomy, and cosmology is questioned. Cold dark matter (CDM) hierarchical clustering cosmology neglects particle collisions, viscosity, turbulence and diffusion and makes predictions in conflict with observations. From Jeans 1902 and CDMHC, the non-baryonic dark matter NBDM forms small clumps during the plasma epoch aft...
متن کامل